

Investigation of Contamination Effects on Laser Induced Optical Damage in Space Flight Lasers

John S. Canham, Ph.D. Swales Aerospace, Inc. 5050 Powder Mill Rd. Beltsville, MD 20705

6/17/04

1

Outline

- Introduction
- Common Damaging Contaminants
- Conditional Effects
- Non-linear Optical Behavior
- Quantization
- Trapped Energy
- * A Digression
- * Conclusions

Introduction

- Why laser based satellites.
 - * Active vs. Passive measurements
 - Time and Spatial resolution

Challenges

- Spaceflight laser challenges
 - * Size
 - Weight
 - ⋆ Power
 - Reliability
 - * Environment

Power Limitations

- Power in space is limited
 - Power in, solar cell
 - ★ Power out, radiators
 - Power transport

Reliability

- Spaceflight
- High Power Density
- High Shot Count
- No Maintenance
- High Cost
- * Environment
- Higher Risk

- Land based
- Lower Average Power Density
- Maintenance
- Lower Cost per output
- Environment
- Lower Risk

Environment

- Vacuum
- * Radiation
- Microgravity
- * Thermal
- Contamination

Contamination

- Contamination is:
 - Something present that is unwanted
 - Dynamic
 - Multicomponent
 - Environmentally dependent behaviorally
 - * Time Dependent

Spaceflight Laser Contamination Environment

- Internal Environment
 - * Air Pressurized
 - Nitrogen Purged, Pressurized
 - Vacuum

6/17/04

Common Contaminants

Particulates

Metal, Oxides, Organic fibers, Skin flakes, polymer particles

Molecular

Plasticizers, Oil, Skin Oils, Polymer outgassing, Solvent vapor, Cleaning product residue, Decomposition products, Soldering rosin

Conditional Effects

Molecular Contaminants behave differently in different environments.

Primary Behaviors:

- Oxidation
- Photolysis/Volatilization
- Refractory Material Formation

Surface Effects

- Surface behavior is highly dependent upon its environment
- Surface energy is larger than the tensile strength of the base material
- Surface energy is decreased by the adsorption of materials
- Surface energy is seldom uniform on a surface
- Surface energy is molecular scale 10⁻⁹ meters

Surface Properties

- Terrestrial Surfaces are covered with water
- Water on the surface is not like bulk water
- ★ Surface fields are on the order of 10¹⁰ V/M
- Surface fields change the behavior and properties of materials by inducing polarization and affecting symmetry
- Pristine surfaces have higher surface energies
- High curvatures result in high surface energy

Non-linear Optical Behavior

- Non-linear optical behavior is due to the interaction of radiation with induced and permanent multipoles
- Interactions are field induced
- Interactions are solely due to multipoles
- Fields in materials are due to compositional, thermal, mechanical and electric gradients
- Asymmetry induces anharmonicity which results in non-linear optical behavior

Induced Non-linearity

Non-linearity is amplified or induced by:

- Surfaces
- * Stresses
- Compositional Gradients
- Point Defects
- * Thermal Gradients
- Excitational Gradients
- External Fields

Applied Field Effects

- Fields applied to asymmetric materials increase the interaction of the material with the applied field
- Distortion of the local electric field is increased by the applied field
- Electromagnetic field interaction increases with asymmetry
- Asymmetry increases with electromagnetic field interaction
- Asymmetry fields propagate about the original asymmetry

Surfaces and Fields

- Surfaces have large fields
- Surface adsorption is due primarily to multipole interactions
- Optical Non-linearity is entirely due to multipole interactions
- Applied radiation amplifies local fields
- Applied radiation on surface adsorbed materials greatly amplifies non-linear optical behavior (factors of millions or more.)

Quantum Behavior

- "Normal" quantum mechanics describes low energy flux systems
- Strict quantization rules apply to stable long duration non-interacting states
- Condensed, particularly solid states, violate quantization assumptions
- Absorption and Emission probabilities assume steady state and low photon arrival rates.
- Material properties are assumed to be constant

Trapped Energy

- High intensity lasers produce high fields
- High fields affect materials properties
- Short laser pulse durations are on the order of material transition times
- Intense laser fields modify the properties of materials
- If absorption probability is increased due to the applied field, and photon flux is sufficiently high, energy can be trapped in a material

Excitons

- Energy trapped in matter creates excitons
- Excitons vary in stability based upon emission probability and reactivity
- Solid state materials tend to form stable excitons
- Glasses form excitons from:
 - Radiation (alpha, beta, neutron, gamma, x-ray, ultraviolet)
 - Rapid cooling (thermal stresses)
 - Laser Radiation
- Can be made to photo-emit
- Create large internal fields

Laser Induced Excitons

- ESCA analysis shows the internal energy in silica
- Oxygen 1s shows a decrease in ionization energy
- Peak area is representative of population distribution
- ★ This exciton population is 3000 times the previously projected maximum value
- The energy stored is about one third the heat of formation of silica
- Emission energy can be induced
- Surface adsorption energy of advantitous hydrocarbons increased to 2 eV

Silica Exciton Significance

What is the significance of large silica exciton concentrations in lasers?

- Large exciton concentrations mean large surface energies
- Large adsorption and materials effects
- Large non-linear effects
- Potential catastrophic release of energy
- Potential identification of the weakening of once damaged laser optics
- Potential lead in the mechanism(s) of contamination related laser optical damage

Silica Exciton Significance

Where else might high concentrations of silicaceous excitons be of significance?

- Silicaceous materials make up most of the solid matter in the universe
- Silicaceous excitons can be stimulated to emit
- Storage of large amounts of energy in silicaceous material could resolve a number of interesting issues
- The significance has probably not been considered due to the presumed low concentration

Interstellar dust

- Excitons are stored energy
- Formation of silicaceous material in stellar events will result in rapid quenching from high temperatures
- Rapid quenching stores energy in stress (excitons)
- Inter stellar dust has a broad emission that has been unexplainable
- Excitons will emit radiation in a broad spectrum from the UV to the near infrared
- In the presence of cosmic radiation, emission can be stimulated

Larger Particles

- Excited material has higher surface energy
- High surface energies attract strongly
- Large particle agglomerates will heat with amplified spontaneous emission
- Stimulated emission will result in more energy release

6/17/04

Earth, or a really big particle

- ★ Solar irradiance is constant +/- 0.1%
- Solar flare activity has been linked to global temperature swings (Little Ice Age-1645-1715)
- Permafrost was seen in more temperate climates
- Solar flares result in increased radiation, primarily at the magnetic poles
- Snowshoe Hare and Arctic Fox, populations, among others, cycle with solar flare activity and resultant arctic tundra temperature
- The cooling of the planet, is slower than predicted by current thermal balance models

Hypothesis

- Exciton emission from silicaceous material can be induced with radiation
- The earth's magnetic field redirects the radiation impact to the poles
- Radiation impinging at the poles would release energy from silicaceous excitons
- This energy release would decay to thermal energy
- Heating of the core would result in convection of the core
- Silicaceous excitons can carry ionizing energies
- Circulating Ions create currents and magnetic fields

Conclusions

- Laser materials interactions are not well understood
- Spaceflight lasers offer significant challenges
- Understanding non-linear optical behavior is key in understanding high intensity laser induced optical damage
- Contamination is inevitable
- Understanding the mechanisms of laser optical damage is crucial in managing the risks
- High concentrations of excitons have been measured in laser optical damage
- There are wide implications of the measured exciton levels

Acknowledgments

This work was carried out under the support of the NASA Earth Science and Technology Office, Through Goddard Space Flight Center's Laser Risk Reduction Program.

6/17/04